Back to Search
Start Over
Co-assembly of Kv4 {alpha} subunits with K+ channel-interacting protein 2 stabilizes protein expression and promotes surface retention of channel complexes.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2010 Oct 22; Vol. 285 (43), pp. 33413-33422. Date of Electronic Publication: 2010 Aug 13. - Publication Year :
- 2010
-
Abstract
- Members of the K(+) channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K(+) channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (I(A)) and cardiac transient outward (I(to)) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.
- Subjects :
- Amino Acid Sequence
Animals
Cell Line
Cell Membrane genetics
Endocytosis physiology
Endoplasmic Reticulum genetics
Endoplasmic Reticulum metabolism
Golgi Apparatus genetics
Golgi Apparatus metabolism
Humans
Kv Channel-Interacting Proteins genetics
Mice
Multiprotein Complexes genetics
Protein Subunits biosynthesis
Protein Subunits genetics
Sequence Deletion
Shal Potassium Channels genetics
Cell Membrane metabolism
Gene Expression Regulation physiology
Kv Channel-Interacting Proteins metabolism
Multiprotein Complexes metabolism
Shal Potassium Channels biosynthesis
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 285
- Issue :
- 43
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 20709747
- Full Text :
- https://doi.org/10.1074/jbc.M110.145185