Back to Search
Start Over
A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery.
- Source :
-
Lab on a chip [Lab Chip] 2010 Nov 21; Vol. 10 (22), pp. 3074-83. Date of Electronic Publication: 2010 Aug 10. - Publication Year :
- 2010
-
Abstract
- This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
- Subjects :
- Animals
Cattle
Dextrans
Diffusion
Fluorescein-5-isothiocyanate analogs & derivatives
Glucose
Microfluidic Analytical Techniques methods
Microscopy, Atomic Force
Microscopy, Electron, Scanning
Models, Chemical
Nanotechnology methods
Particle Size
Serum Albumin, Bovine
Surface Properties
Drug Delivery Systems instrumentation
Membranes, Artificial
Microfluidic Analytical Techniques instrumentation
Nanostructures chemistry
Nanotechnology instrumentation
Subjects
Details
- Language :
- English
- ISSN :
- 1473-0197
- Volume :
- 10
- Issue :
- 22
- Database :
- MEDLINE
- Journal :
- Lab on a chip
- Publication Type :
- Academic Journal
- Accession number :
- 20697650
- Full Text :
- https://doi.org/10.1039/c0lc00013b