Back to Search
Start Over
Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy.
- Source :
-
Nanotechnology [Nanotechnology] 2010 Jul 23; Vol. 21 (29), pp. 295101. Date of Electronic Publication: 2010 Jul 05. - Publication Year :
- 2010
-
Abstract
- High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 microg ml(-1). This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy.
- Subjects :
- Apoptosis drug effects
Apoptosis radiation effects
Cell Growth Processes drug effects
Cell Growth Processes radiation effects
Cell Line, Tumor
Cell Survival drug effects
Cell Survival radiation effects
DNA Breaks, Double-Stranded
Dose-Response Relationship, Drug
Drug Screening Assays, Antitumor
Flow Cytometry
Gold administration & dosage
Gold pharmacokinetics
Humans
Metal Nanoparticles chemistry
Nonlinear Dynamics
Oxidation-Reduction
Oxidative Stress drug effects
Oxidative Stress radiation effects
Radiation-Sensitizing Agents administration & dosage
Radiation-Sensitizing Agents chemistry
Radiation-Sensitizing Agents pharmacokinetics
Gold pharmacology
Metal Nanoparticles therapeutic use
Subjects
Details
- Language :
- English
- ISSN :
- 1361-6528
- Volume :
- 21
- Issue :
- 29
- Database :
- MEDLINE
- Journal :
- Nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 20601762
- Full Text :
- https://doi.org/10.1088/0957-4484/21/29/295101