Back to Search Start Over

Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

Authors :
Goldoni D
Zhao Y
Green BD
McDermott BJ
Collins A
Source :
Journal of cellular physiology [J Cell Physiol] 2010 Nov; Vol. 225 (3), pp. 751-6.
Publication Year :
2010

Abstract

HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype.<br /> (© 2010 Wiley-Liss, Inc.)

Details

Language :
English
ISSN :
1097-4652
Volume :
225
Issue :
3
Database :
MEDLINE
Journal :
Journal of cellular physiology
Publication Type :
Academic Journal
Accession number :
20568224
Full Text :
https://doi.org/10.1002/jcp.22278