Back to Search Start Over

Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing.

Authors :
Coelho LP
Peng T
Murphy RF
Source :
Bioinformatics (Oxford, England) [Bioinformatics] 2010 Jun 15; Vol. 26 (12), pp. i7-12.
Publication Year :
2010

Abstract

Motivation: Proteins exhibit complex subcellular distributions, which may include localizing in more than one organelle and varying in location depending on the cell physiology. Estimating the amount of protein distributed in each subcellular location is essential for quantitative understanding and modeling of protein dynamics and how they affect cell behaviors. We have previously described automated methods using fluorescent microscope images to determine the fractions of protein fluorescence in various subcellular locations when the basic locations in which a protein can be present are known. As this set of basic locations may be unknown (especially for studies on a proteome-wide scale), we here describe unsupervised methods to identify the fundamental patterns from images of mixed patterns and estimate the fractional composition of them.<br />Methods: We developed two approaches to the problem, both based on identifying types of objects present in images and representing patterns by frequencies of those object types. One is a basis pursuit method (which is based on a linear mixture model), and the other is based on latent Dirichlet allocation (LDA). For testing both approaches, we used images previously acquired for testing supervised unmixing methods. These images were of cells labeled with various combinations of two organelle-specific probes that had the same fluorescent properties to simulate mixed patterns of subcellular location.<br />Results: We achieved 0.80 and 0.91 correlation between estimated and underlying fractions of the two probes (fundamental patterns) with basis pursuit and LDA approaches, respectively, indicating that our methods can unmix the complex subcellular distribution with reasonably high accuracy.<br />Availability: http://murphylab.web.cmu.edu/software.

Details

Language :
English
ISSN :
1367-4811
Volume :
26
Issue :
12
Database :
MEDLINE
Journal :
Bioinformatics (Oxford, England)
Publication Type :
Academic Journal
Accession number :
20529939
Full Text :
https://doi.org/10.1093/bioinformatics/btq220