Back to Search Start Over

First-principles constraints on diffusion in lower-mantle minerals and a weak D'' layer.

Authors :
Ammann MW
Brodholt JP
Wookey J
Dobson DP
Source :
Nature [Nature] 2010 May 27; Vol. 465 (7297), pp. 462-5.
Publication Year :
2010

Abstract

Post-perovskite MgSiO(3) is believed to be present in the D'' region of the Earth's lowermost mantle. Its existence has been used to explain a number of seismic observations, such as the D'' reflector and the high degree of seismic anisotropy within the D'' layer. Ionic diffusion in post-perovskite controls its viscosity, which in turn controls the thermal and chemical coupling between the core and the mantle, the development of plumes and the stability of deep chemical reservoirs. Here we report the use of first-principles methods to calculate absolute diffusion rates in post-perovskite under the conditions found in the Earth's lower mantle. We find that the diffusion of Mg(2+) and Si(4+) in post-perovskite is extremely anisotropic, with almost eight orders of magnitude difference between the fast and slow directions. If post-perovskite in the D'' layer shows significant lattice-preferred orientation, the fast diffusion direction will render post-perovskite up to four orders of magnitude weaker than perovskite. The presence of weak post-perovskite strongly increases the heat flux across the core-mantle boundary and alters the geotherm. It also provides an explanation for laterally varying viscosity in the lowermost mantle, as required by long-period geoid models. Moreover, the behaviour of very weak post-perovskite can reconcile seismic observation of a D'' reflector with recent experiments showing that the width of the perovskite-to-post-perovskite transition is too wide to cause sharp reflectors. We suggest that the observed sharp D'' reflector is caused by a rapid change in seismic anisotropy. Once sufficient perovskite has transformed into post-perovskite, post-perovskite becomes interconnected and strain is partitioned into this weaker phase. At this point, the weaker post-perovskite will start to deform rapidly, thereby developing a strong crystallographic texture. We show that the expected seismic contrast between the deformed perovskite-plus-post-perovskite assemblage and the overlying isotropic perovskite-plus-post-perovskite assemblage is consistent with seismic observations.

Details

Language :
English
ISSN :
1476-4687
Volume :
465
Issue :
7297
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
20505725
Full Text :
https://doi.org/10.1038/nature09052