Back to Search Start Over

Device Thrombogenicity Emulator (DTE)--design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs.

Authors :
Xenos M
Girdhar G
Alemu Y
Jesty J
Slepian M
Einav S
Bluestein D
Source :
Journal of biomechanics [J Biomech] 2010 Aug 26; Vol. 43 (12), pp. 2400-9. Date of Electronic Publication: 2010 May 21.
Publication Year :
2010

Abstract

Patients who receive prosthetic heart valve (PHV) implants require mandatory anticoagulation medication after implantation due to the thrombogenic potential of the valve. Optimization of PHV designs may facilitate reduction of flow-induced thrombogenicity and reduce or eliminate the need for post-implant anticoagulants. We present a methodology entitled Device Thrombogenicty Emulator (DTE) for optimizing the thrombo-resistance performance of PHV by combining numerical and experimental approaches. Two bileaflet mechanical heart valves (MHV) designs, St. Jude Medical (SJM) and ATS, were investigated by studying the effect of distinct flow phases on platelet activation. Transient turbulent and direct numerical simulations (DNS) were conducted, and stress loading histories experienced by the platelets were calculated along flow trajectories. The numerical simulations indicated distinct design dependent differences between the two valves. The stress loading waveforms extracted from the numerical simulations were programmed into a hemodynamic shearing device (HSD), emulating the flow conditions past the valves in distinct 'hot-spot' flow regions that are implicated in MHV thrombogenicity. The resultant platelet activity was measured with a modified prothrombinase assay, and was found to be significantly higher in the SJM valve, mostly during the regurgitation phase. The experimental results were in excellent agreement with the calculated platelet activation potential. This establishes the utility of the DTE methodology for serving as a test bed for evaluating design modifications for achieving better thrombogenic performance for such devices.<br /> (2010 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-2380
Volume :
43
Issue :
12
Database :
MEDLINE
Journal :
Journal of biomechanics
Publication Type :
Academic Journal
Accession number :
20483411
Full Text :
https://doi.org/10.1016/j.jbiomech.2010.04.020