Back to Search Start Over

Femtosecond laser lithotripsy: feasibility and ablation mechanism.

Authors :
Qiu J
Teichman JM
Wang T
Neev J
Glickman RD
Chan KF
Milner TE
Source :
Journal of biomedical optics [J Biomed Opt] 2010 Mar-Apr; Vol. 15 (2), pp. 028001.
Publication Year :
2010

Abstract

Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

Details

Language :
English
ISSN :
1560-2281
Volume :
15
Issue :
2
Database :
MEDLINE
Journal :
Journal of biomedical optics
Publication Type :
Academic Journal
Accession number :
20459291
Full Text :
https://doi.org/10.1117/1.3368998