Back to Search
Start Over
Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.
- Source :
-
Neuroscience [Neuroscience] 2010 Aug 11; Vol. 169 (1), pp. 158-70. Date of Electronic Publication: 2010 May 04. - Publication Year :
- 2010
-
Abstract
- Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories.<br /> (Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.)
- Subjects :
- Animals
Basal Ganglia drug effects
Dyskinesia, Drug-Induced etiology
Electric Stimulation
Ethylamines toxicity
Gene Expression Regulation drug effects
Genes, fos
Indoles toxicity
Male
Mouth
Neural Pathways physiopathology
Oncogene Proteins v-fos biosynthesis
Prefrontal Cortex drug effects
Prefrontal Cortex physiopathology
Pyridines toxicity
Rats
Rats, Sprague-Dawley
Receptor, Serotonin, 5-HT2C drug effects
Serotonin Receptor Agonists toxicity
Substantia Nigra drug effects
Substantia Nigra physiopathology
Basal Ganglia physiopathology
Dyskinesia, Drug-Induced physiopathology
Ethylamines pharmacology
Facial Muscles physiopathology
Indoles pharmacology
Neural Pathways drug effects
Pyridines pharmacology
Receptor, Serotonin, 5-HT2C physiology
Serotonin Receptor Agonists pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1873-7544
- Volume :
- 169
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 20447448
- Full Text :
- https://doi.org/10.1016/j.neuroscience.2010.04.061