Back to Search
Start Over
Group X secretory phospholipase A2 regulates the expression of steroidogenic acute regulatory protein (StAR) in mouse adrenal glands.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2010 Jun 25; Vol. 285 (26), pp. 20031-9. Date of Electronic Publication: 2010 Apr 26. - Publication Year :
- 2010
-
Abstract
- We developed C57BL/6 mice with targeted deletion of group X secretory phospholipase A(2) (GX KO). These mice have approximately 80% higher plasma corticosterone concentrations compared with wild-type (WT) mice under both basal and adrenocorticotropic hormone (ACTH)-induced stress conditions. This increased corticosterone level was not associated with increased circulating ACTH or a defect in the hypothalamic-pituitary axis as evidenced by a normal response to dexamethasone challenge. Primary cultures of adrenal cells from GX KO mice exhibited significantly increased corticosteroid secretion compared with WT cells. Conversely, overexpression of GX secretory phospholipase A(2) (sPLA(2)), but not a catalytically inactive mutant form of GX sPLA(2), significantly reduced steroid production 30-40% in Y1 mouse adrenal cell line. This effect was reversed by the sPLA(2) inhibitor, indoxam. Silencing of endogenous M-type receptor expression did not restore steroid production in GX sPLA(2)-overexpressing Y1 cells, ruling out a role for this sPLA(2) receptor in this regulatory process. Expression of steroidogenic acute regulatory protein (StAR), the rate-limiting protein in corticosteroid production, was approximately 2-fold higher in adrenal glands of GX KO mice compared with WT mice, whereas StAR expression was suppressed in Y1 cells overexpressing GX sPLA(2). Results from StAR-promoter luciferase reporter gene assays indicated that GX sPLA(2) antagonizes StAR promoter activity and liver X receptor-mediated StAR promoter activation. In summary, GX sPLA(2) is expressed in mouse adrenal glands and functions to negatively regulate corticosteroid synthesis, most likely by negatively regulating StAR expression.
- Subjects :
- Adrenal Glands cytology
Adrenal Glands drug effects
Adrenocorticotropic Hormone blood
Adrenocorticotropic Hormone pharmacology
Animals
Cell Line
Cells, Cultured
Corticosterone blood
Corticosterone metabolism
Female
Group X Phospholipases A2 metabolism
Immunohistochemistry
Luciferases genetics
Luciferases metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mutation
Phosphoproteins metabolism
Progesterone metabolism
Promoter Regions, Genetic genetics
Reverse Transcriptase Polymerase Chain Reaction
Transfection
Adrenal Glands metabolism
Gene Expression Regulation
Group X Phospholipases A2 genetics
Phosphoproteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 285
- Issue :
- 26
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 20421306
- Full Text :
- https://doi.org/10.1074/jbc.M109.090423