Back to Search Start Over

Group X secretory phospholipase A2 regulates the expression of steroidogenic acute regulatory protein (StAR) in mouse adrenal glands.

Authors :
Shridas P
Bailey WM
Boyanovsky BB
Oslund RC
Gelb MH
Webb NR
Source :
The Journal of biological chemistry [J Biol Chem] 2010 Jun 25; Vol. 285 (26), pp. 20031-9. Date of Electronic Publication: 2010 Apr 26.
Publication Year :
2010

Abstract

We developed C57BL/6 mice with targeted deletion of group X secretory phospholipase A(2) (GX KO). These mice have approximately 80% higher plasma corticosterone concentrations compared with wild-type (WT) mice under both basal and adrenocorticotropic hormone (ACTH)-induced stress conditions. This increased corticosterone level was not associated with increased circulating ACTH or a defect in the hypothalamic-pituitary axis as evidenced by a normal response to dexamethasone challenge. Primary cultures of adrenal cells from GX KO mice exhibited significantly increased corticosteroid secretion compared with WT cells. Conversely, overexpression of GX secretory phospholipase A(2) (sPLA(2)), but not a catalytically inactive mutant form of GX sPLA(2), significantly reduced steroid production 30-40% in Y1 mouse adrenal cell line. This effect was reversed by the sPLA(2) inhibitor, indoxam. Silencing of endogenous M-type receptor expression did not restore steroid production in GX sPLA(2)-overexpressing Y1 cells, ruling out a role for this sPLA(2) receptor in this regulatory process. Expression of steroidogenic acute regulatory protein (StAR), the rate-limiting protein in corticosteroid production, was approximately 2-fold higher in adrenal glands of GX KO mice compared with WT mice, whereas StAR expression was suppressed in Y1 cells overexpressing GX sPLA(2). Results from StAR-promoter luciferase reporter gene assays indicated that GX sPLA(2) antagonizes StAR promoter activity and liver X receptor-mediated StAR promoter activation. In summary, GX sPLA(2) is expressed in mouse adrenal glands and functions to negatively regulate corticosteroid synthesis, most likely by negatively regulating StAR expression.

Details

Language :
English
ISSN :
1083-351X
Volume :
285
Issue :
26
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
20421306
Full Text :
https://doi.org/10.1074/jbc.M109.090423