Back to Search Start Over

A biochemical and genetic study on all non-synonymous single nucleotide polymorphisms of the gene encoding human deoxyribonuclease I potentially relevant to autoimmunity.

Authors :
Yasuda T
Ueki M
Takeshita H
Fujihara J
Kimura-Kataoka K
Iida R
Tsubota E
Soejima M
Koda Y
Kato H
Panduro A
Source :
The international journal of biochemistry & cell biology [Int J Biochem Cell Biol] 2010 Jul; Vol. 42 (7), pp. 1216-25. Date of Electronic Publication: 2010 Apr 22.
Publication Year :
2010

Abstract

A reduction of deoxyribonuclease I (DNase I) activity levels in the serum of patients with autoimmune diseases has been reported. The objectives of this study were to clarify genetic and biochemical aspects of 12 non-synonymous SNPs in the human gene (DNASE1), potentially giving rise to an alteration in the in vivo DNase I activity levels. Genotyping of all the non-synonymous SNPs was performed in healthy subjects of three ethnic groups including 15 populations using newly developed methods. Among them, only four SNPs, R-21S, Y95S, G105R, and Q222R were polymorphic in all or some populations; Asian group showed a relatively low genetic diversity of these SNPs. Furthermore, the distribution pattern of the common SNP Q222R was classified into three ethnic groups. The activity levels of the amino acid-substituted DNase I forms derived from SNPs R-21S, G105R, P132A, and P197S were significantly high compared with that of the wild-type; the polymorphic SNPs R-21S and G105R gave rise to a high activity-harboring DNase I isoform. On the other hand, activity levels from Q35H, R85G, V89M, C209Y, Q222R, and A224P were significantly low, but these SNPs, except Q222R, were not distributed in any of the populations. However, since these SNPs may produce potentially low levels of in vivo DNase I activity, a minor allele in each SNP will be served as a genetic risk factor for autoimmune diseases. These findings on non-synonymous SNPs in DNASE1 may provide a biochemical-genetic basis for the clarification of a possible relationship between DNase I and the diseases.<br /> (Copyright 2010 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-5875
Volume :
42
Issue :
7
Database :
MEDLINE
Journal :
The international journal of biochemistry & cell biology
Publication Type :
Academic Journal
Accession number :
20417303
Full Text :
https://doi.org/10.1016/j.biocel.2010.04.012