Back to Search Start Over

Enantiospecific total synthesis of the important biogenetic intermediates along the ajmaline pathway, (+)-polyneuridine and (+)-polyneuridine aldehyde, as well as 16-epivellosimine and macusine A.

Authors :
Yin W
Kabir MS
Wang Z
Rallapalli SK
Ma J
Cook JM
Source :
The Journal of organic chemistry [J Org Chem] 2010 May 21; Vol. 75 (10), pp. 3339-49.
Publication Year :
2010

Abstract

The first stereospecific synthesis of polyneuridine aldehyde (6), 16-epivellosimine (7), (+)-polyneuridine (8), and (+)-macusine A (9) has been accomplished from commercially available d-(+)-tryptophan methyl ester. d-(+)-Tryptophan has served here both as the chiral auxiliary and the starting material for the synthesis of the common intermediate, (+)-vellosimine (13). This alkaloid was available in enantiospecific fashion in seven reaction vessels in 27% overall yield from d-(+)-trytophan methyl ester (14) via a combination of the asymmetric Pictet-Spengler reaction, Dieckmann cyclization, and a stereocontrolled intramolecular enolate-driven palladium-mediated cross-coupling reaction. A new process for this stereocontrolled intramolecular cross-coupling has been developed via a copper-mediated process. The initial results of this investigation indicated that an enolate-driven palladium-mediated cross-coupling reaction can be accomplished by a copper-mediated process which is less expensive and much easier to work up. An enantiospecific total synthesis of (+)-polyneuridine aldehyde (6), which has been proposed as an important biogenetic intermediate in the biosynthesis of quebrachidine (2), was then accomplished in an overall yield of 14.1% in 13 reaction vessels from d-(+)-tryptophan methyl ester (14). Aldehyde 13 was protected as the N(a)-Boc aldehyde 32 and then converted into the prochiral C(16)-quaternary diol 12 via the practical Tollens' reaction and deprotection. The DDQ-mediated oxidative cyclization and TFA/Et(3)SiH reductive cleavage served as protection/deprotection steps to provide a versatile entry into the three alkaloids polyneuridine aldehyde (6), polyneuridine (8), and macusine A (9) from the quarternary diol 12. The oxidation of the 16-hydroxymethyl group present in the axial position was achieved with the Corey-Kim reagent to provide the desired beta-axial aldehydes, polyneuridine aldehyde (6), and 16-epivellosimine (7) with 100% diastereoselectivity.

Details

Language :
English
ISSN :
1520-6904
Volume :
75
Issue :
10
Database :
MEDLINE
Journal :
The Journal of organic chemistry
Publication Type :
Academic Journal
Accession number :
20392128
Full Text :
https://doi.org/10.1021/jo100279w