Back to Search
Start Over
Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells.
- Source :
-
Pflugers Archiv : European journal of physiology [Pflugers Arch] 2010 Jun; Vol. 460 (1), pp. 121-30. - Publication Year :
- 2010
-
Abstract
- TRPC5 is a member of the canonical transient receptor potential (TRPC) family of proteins that forms cationic channels either through homomultimeric assembly or heteromultimeric coordination with other TRPC proteins. It is expressed in a variety of cells including central neurones and endothelial cells and has susceptibility to stimulation by multiple factors. Here we investigated if TRPC5 is sensitive to nitric oxide. Mouse TRPC5 or human TRPC5 was over-expressed in HEK293 cells, and TRPC5 activity was determined by measuring the cytosolic Ca(2+) concentration with an indicator dye or by recording membrane current under voltage clamp. TRPC5 activity could be evoked by carbachol acting at muscarinic receptors, lanthanum, or a reducing agent. However, S-nitroso-N-acetylpenicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) failed to stimulate or inhibit TRPC5 at concentrations that generated nitric oxide, caused vasorelaxation, or suppressed activity of TRPC6 via protein kinase G. At high concentrations, SNAP (but not DEA-NONOate) occasionally stimulated TRPC5 but the effect was confounded by background TRPC5-independent Ca(2+) signals. Endogenous Ca(2+)-entry in bovine aortic endothelial cells (BAECs) was suppressed by SNAP; TRPC5 blocking antibody or dominant-negative mutant TRPC5 suppressed this Ca(2+) entry and occluded the effect of SNAP. The data suggest that nitric oxide is not a direct modulator of homomeric TRPC5 channels but may inhibit endogenous BAEC channels that contain TRPC5.
- Subjects :
- Animals
Calcium Signaling
Cattle
Cell Line
Cyclic GMP-Dependent Protein Kinase Type I
Cyclic GMP-Dependent Protein Kinases metabolism
Down-Regulation
Endothelial Cells drug effects
Fluorometry
Humans
Lanthanum metabolism
Membrane Potentials
Mice
Muscarinic Agonists pharmacology
Mutation
Nitric Oxide Donors pharmacology
Patch-Clamp Techniques
Reducing Agents pharmacology
TRPC Cation Channels drug effects
TRPC Cation Channels genetics
TRPC6 Cation Channel
Time Factors
Transfection
Endothelial Cells metabolism
Nitric Oxide metabolism
TRPC Cation Channels metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1432-2013
- Volume :
- 460
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Pflugers Archiv : European journal of physiology
- Publication Type :
- Academic Journal
- Accession number :
- 20390293
- Full Text :
- https://doi.org/10.1007/s00424-010-0823-3