Back to Search Start Over

Characterization of the semiquinone radical stabilized by the cytochrome aa3-600 menaquinol oxidase of Bacillus subtilis.

Authors :
Yi SM
Narasimhulu KV
Samoilova RI
Gennis RB
Dikanov SA
Source :
The Journal of biological chemistry [J Biol Chem] 2010 Jun 11; Vol. 285 (24), pp. 18241-51. Date of Electronic Publication: 2010 Mar 29.
Publication Year :
2010

Abstract

Cytochrome aa(3)-600 is one of the principle respiratory oxidases from Bacillus subtilis and is a member of the heme-copper superfamily of oxygen reductases. This enzyme catalyzes the two-electron oxidation of menaquinol and the four-electron reduction of O(2) to 2H(2)O. Cytochrome aa(3)-600 is of interest because it is a very close homologue of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli, except that it uses menaquinol instead of ubiquinol as a substrate. One question of interest is how the proteins differ in response to the differences in structure and electrochemical properties between ubiquinol and menaquinol. Cytochrome bo(3) has a high affinity binding site for ubiquinol that stabilizes a ubi-semiquinone. This has permitted the use of pulsed EPR techniques to investigate the protein interaction with the ubiquinone. The current work initiates studies to characterize the equivalent site in cytochrome aa(3)-600. Cytochrome aa(3)-600 has been cloned and expressed in a His-tagged form in B. subtilis. After isolation of the enzyme in dodecylmaltoside, it is shown that the pure enzyme contains 1 eq of menaquinone-7 and that the enzyme stabilizes a mena-semiquinone. Pulsed EPR studies have shown that there are both similarities as well as significant differences in the interactions of the mena-semiquinone with cytochrome aa(3)-600 in comparison with the ubi-semiquinone in cytochrome bo(3). Our data indicate weaker hydrogen bonds of the menaquinone in cytochrome aa(3)-600 in comparison with ubiquinone in cytochrome bo(3). In addition, the electronic structure of the semiquinone cyt aa(3)-600 is more shifted toward the anionic form from the neutral state in cyt bo(3).

Details

Language :
English
ISSN :
1083-351X
Volume :
285
Issue :
24
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
20351111
Full Text :
https://doi.org/10.1074/jbc.M110.116186