Back to Search Start Over

CK2 and GSK3 phosphorylation on S29 controls wild-type ATXN3 nuclear uptake.

Authors :
Pastori V
Sangalli E
Coccetti P
Pozzi C
Nonnis S
Tedeschi G
Fusi P
Source :
Biochimica et biophysica acta [Biochim Biophys Acta] 2010 Jul-Aug; Vol. 1802 (7-8), pp. 583-92. Date of Electronic Publication: 2010 Mar 27.
Publication Year :
2010

Abstract

In the present work we show that murine ATXN3 (ATXN3Q6) nuclear uptake is promoted by phosphorylation on serine 29, a highly conserved residue inside the Josephin domain. Both casein kinase 2 (CK2) and glycogen synthase kinase 3 (GSK3) are able to carry out phosphorylation on this residue. S29 phosphorylation was initially assessed in vitro on purified ATXN3Q6, and subsequently confirmed in transfected COS-7 cells, by MS analysis. Site-directed mutagenesis of S29 to an alanine was shown to strongly reduce nuclear uptake, in COS-7 transiently transfected cells overexpressing ATXN3Q6, while substitution with phospho-mimic aspartic acid restored the wild-type phenotype. Finally, treatment with CK2 and GSK3 inhibitors prevented S29 phosphorylation and strongly inhibited nuclear uptake, showing that both kinases are involved in ATXN3Q6 subcellular sorting. Although other authors have previously addressed this issue, we show for the first time that ATXN3 is phosphorylated inside the Josephin domain and that S29 phosphorylation is involved in nuclear uptake of ATXN3.<br /> (Copyright 2010 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
0006-3002
Volume :
1802
Issue :
7-8
Database :
MEDLINE
Journal :
Biochimica et biophysica acta
Publication Type :
Academic Journal
Accession number :
20347968
Full Text :
https://doi.org/10.1016/j.bbadis.2010.03.007