Back to Search Start Over

Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis.

Authors :
Madrigal-Matute J
López-Franco O
Blanco-Colio LM
Muñoz-García B
Ramos-Mozo P
Ortega L
Egido J
Martín-Ventura JL
Source :
Cardiovascular research [Cardiovasc Res] 2010 May 01; Vol. 86 (2), pp. 330-7. Date of Electronic Publication: 2010 Feb 12.
Publication Year :
2010

Abstract

Aims: Heat shock protein 90 (HSP90) is a ubiquitous chaperone involved in the folding, activation, and assembly of many proteins. HSP90 inhibitors [17-allylamino-17-demethoxygeldamycin (17-AAG)/17-dimethyl aminothylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG)] bind to and inactivate HSP90, increasing the heat shock response and suppressing different signalling pathways. We aim to investigate the effect of HSP90 inhibitors in the modulation of inflammatory responses during atherogenesis.<br />Methods and Results: In human atherosclerotic plaques, HSP90 immunostaining was increased in inflammatory regions and in plaques characterized by lower cap thickness. In cultured human macrophages and vascular smooth muscle cells, treatment with either 17-AAG or 17-DMAG increased HSP70 expression and reduced transcription factor [signal transducers and activators of transcription (STAT) and nuclear factor-kappaB (NF-kappaB)] activation and chemokine expression induced by proinflammatory cytokines. In vivo, hyperlipidaemic ApoE(-/-) mice were randomized to 17-DMAG (2 mg/kg every 2 days, n = 11) or vehicle injected (n = 9) during 10 weeks. Atherosclerotic plaques of mice treated with 17-DMAG displayed increased HSP70 expression and diminished NF-kappaB and STAT activation, along with decreased lesion, lipid, and macrophage content, compared with vehicle-injected mice. In addition, treatment with 17-DMAG significantly reduced monocyte chemoattractant protein-1 levels, both in plaques and in plasma.<br />Conclusion: HSP90 expression is associated with features of plaque instability in advanced human lesions. HSP90 inhibitors reduce inflammatory responses in atherosclerosis, suggesting that HSP90 could be a novel therapeutic target in atherosclerosis.

Details

Language :
English
ISSN :
1755-3245
Volume :
86
Issue :
2
Database :
MEDLINE
Journal :
Cardiovascular research
Publication Type :
Academic Journal
Accession number :
20154064
Full Text :
https://doi.org/10.1093/cvr/cvq046