Back to Search Start Over

Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency.

Authors :
Gonzalez R
Jennings LL
Knuth M
Orth AP
Klock HE
Ou W
Feuerhelm J
Hull MV
Koesema E
Wang Y
Zhang J
Wu C
Cho CY
Su AI
Batalov S
Chen H
Johnson K
Laffitte B
Nguyen DG
Snyder EY
Schultz PG
Harris JL
Lesley SA
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2010 Feb 23; Vol. 107 (8), pp. 3552-7. Date of Electronic Publication: 2010 Feb 02.
Publication Year :
2010

Abstract

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFbeta/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.

Details

Language :
English
ISSN :
1091-6490
Volume :
107
Issue :
8
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
20133595
Full Text :
https://doi.org/10.1073/pnas.0914019107