Back to Search
Start Over
Radio frequency rectification on membrane bound pores.
- Source :
-
Nanotechnology [Nanotechnology] 2010 Feb 19; Vol. 21 (7), pp. 75201. Date of Electronic Publication: 2010 Jan 18. - Publication Year :
- 2010
-
Abstract
- Probing the interaction of biological systems with radio frequencies holds great promise for research and drug screening applications. While a common assumption is that biological systems do not operate at radio frequencies, we find that currents due to ion transport through channels and pores in cell membranes are in the pA to nA range. These values translate via the average current I = ne/tau(d) = nef to frequencies in the range of 1 MHz-1 GHz, where n is the average number of ions transported and tau(d) is the dwell time of the ions in the channel. It is thus desirable to have circuitry available which facilitates radio frequency spectroscopy of ion transport. This will yield real-time in vitro information on ion channel operation. Here we present measurements on the local interaction of a radio frequency signal with single ion channels and pores. We find radio frequency rectification and pumping on the channels and pores embedded in suspended bilipid membranes, recorded in direct current measurements. This electromagnetic modulation can be used to probe the dynamics of ion channel conformational changes.
Details
- Language :
- English
- ISSN :
- 1361-6528
- Volume :
- 21
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 20081294
- Full Text :
- https://doi.org/10.1088/0957-4484/21/7/075201