Back to Search Start Over

[Vegetation influence on nutrients distribution in pore water of salt marsh sediment].

Authors :
Wang WW
Li DJ
Gao L
Source :
Huan jing ke xue= Huanjing kexue [Huan Jing Ke Xue] 2009 Nov; Vol. 30 (11), pp. 3209-17.
Publication Year :
2009

Abstract

The variations of nutrients in pore water of salt marsh sediment were surveyed in the middle intertidal zone of Chongming Dongtan during August 2007 to May 2008 to identify plant impact on nutrients distribution. The results show that NH4(+) -N and PO4(3-) -P concentrations are lower in pore water of Spartina alterniflora and Phragmites australis zones than in bare flat, and specially, NH4(+) -N concentrations in summer and autumn decrease by one more orders of magnitude. Compared to winter, nutrients concentrations are obviously higher during the period of plant growth, and plant biomass is clearly correlative to nitrogen and phosphorus. Vegetation growth influences nitrogen content intensively. NH4(-) -N concentrations in Spartina alterniflora and Phragmites australis zones are 44.21 and 74.38 micromol x L(-1) respectively, distinctly lower than that in bare flat and Scirpus mariquete zone (340.14 and 291.87 micromol x L(-1) respectively). Moreover, NO(x)(-) -N concentration is one to two order(s) of magnitude lower than NH4(+) -N, and its highest value exists in Phragmites australis zone (5.94 micromol x L(-1)). The results of molecule diffusive flux of nutrients in the surface sediment-overlying water interface indicate that marsh sediment is the source for SiO3(2-) -Si, NH4(+) -N and PO4(3-) -P, and the rank for NO(x)(-) -N (NO3(-) -N + NO2(-) -N), and NO(x)(-) -N flux from overlying water to sediment [16.23 micromol x (m2 x h)(-1)] is higher than NH4(+) -N flux from sediment to overlying water [15.53 micromol x (m2 x h)(-1)]. Vegetation growth accommodates nutrient structure of the estuarine ecosystem by affecting sediment-water interface mass flux and nutrient ratios in pore water and overlying water.

Details

Language :
Chinese
ISSN :
0250-3301
Volume :
30
Issue :
11
Database :
MEDLINE
Journal :
Huan jing ke xue= Huanjing kexue
Publication Type :
Academic Journal
Accession number :
20063731