Back to Search Start Over

100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors.

Authors :
Lee M
Lee J
Kim TH
Lee H
Lee BY
Park J
Jhon YM
Seong MJ
Hong S
Source :
Nanotechnology [Nanotechnology] 2010 Feb 05; Vol. 21 (5), pp. 055504. Date of Electronic Publication: 2009 Dec 24.
Publication Year :
2010

Abstract

Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of approximately 1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

Details

Language :
English
ISSN :
1361-6528
Volume :
21
Issue :
5
Database :
MEDLINE
Journal :
Nanotechnology
Publication Type :
Academic Journal
Accession number :
20032552
Full Text :
https://doi.org/10.1088/0957-4484/21/5/055504