Back to Search Start Over

Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor.

Authors :
Xu Z
Baek KH
Kim HN
Cui J
Qian X
Spring DR
Shin I
Yoon J
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2010 Jan 20; Vol. 132 (2), pp. 601-10.
Publication Year :
2010

Abstract

It is still a significant challenge to develop a Zn(2+)-selective fluorescent sensor with the ability to exclude the interference of some heavy and transition metal (HTM) ions such as Fe(2+), Co(2+), Ni(2+), Cu(2+), Cd(2+), and Hg(2+). Herein, we report a novel amide-containing receptor for Zn(2+), combined with a naphthalimide fluorophore, termed ZTRS. The fluorescence, absorption detection, NMR, and IR studies indicated that ZTRS bound Zn(2+) in an imidic acid tautomeric form of the amide/di-2-picolylamine receptor in aqueous solution, while most other HTM ions were bound to the sensor in an amide tautomeric form. Due to this differential binding mode, ZTRS showed excellent selectivity for Zn(2+) over most competitive HTM ions with an enhanced fluorescence (22-fold) as well as a red-shift in emission from 483 to 514 nm. Interestingly, the ZTRS/Cd(2+) complex showed an enhanced (21-fold) blue-shift in emission from 483 to 446 nm. Therefore, ZTRS discriminated in vitro and in vivo Zn(2+) and Cd(2+) with green and blue fluorescence, respectively. Due to the stronger affinity, Zn(2+) could be ratiometrically detected in vitro and in vivo with a large emission wavelength shift from 446 to 514 nm via a Cd(2+) displacement approach. ZTRS was also successfully used to image intracellular Zn(2+) ions in the presence of iron ions. Finally, we applied ZTRS to detect zinc ions during the development of living zebrafish embryos.

Details

Language :
English
ISSN :
1520-5126
Volume :
132
Issue :
2
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
20000765
Full Text :
https://doi.org/10.1021/ja907334j