Back to Search Start Over

Sparse generalized Laguerre-Volterra model of neural population dynamics.

Authors :
Song D
Chan RH
Marmarelis VZ
Hampson RE
Deadwyler SA
Berger TW
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2009; Vol. 2009, pp. 4555-8.
Publication Year :
2009

Abstract

To understand the function of a brain region, e.g., hippocampus, it is necessary to model its input-output property. Such a model can serve as the computational basis of the development of cortical prostheses restoring the transformation of population neural activities performed by the brain region. We formulate a sparse generalized Laguerre-Volterra model (SGLVM) for the multiple-input, multiple-output (MIMO) transformation of spike trains. A SGLVM consists of a set of feedforward Laguerre-Volterra kernels, a feedback Laguerre-Volterra kernel, and a probit link function. The sparse model representation involving only significant self and cross terms is achieved through statistical model selection and cross-validation methods. The SGLVM is applied successfully to the hippocampal CA3-CA1 population dynamics.

Details

Language :
English
ISSN :
2375-7477
Volume :
2009
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
19963836
Full Text :
https://doi.org/10.1109/IEMBS.2009.5332719