Back to Search
Start Over
N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119.
- Source :
-
Molecular endocrinology (Baltimore, Md.) [Mol Endocrinol] 2010 Jan; Vol. 24 (1), pp. 161-70. Date of Electronic Publication: 2009 Nov 09. - Publication Year :
- 2010
-
Abstract
- G protein-coupled receptor 119 (GPR119) is largely restricted to pancreatic insulin-producing beta-cells and intestinal glucagon-like peptide-1-producing L-cells. Synthetic agonists of this receptor elicit glucose-dependent release of these endocrine factors, thereby enhancing glycemic control. Oleoylethanolamide also activates GPR119, but it remains unclear whether endogenous production of this lipid modulates GPR119 activity under normal or dysglycemic conditions. We show here that a relatively diverse set of lipid amides activate GPR119. Among these, the endovallinoid N-oleoyldopamine (OLDA) stimulated cAMP accumulation in GPR119-transfected cells as effectively as oleoylethanolamide and the previously described synthetic agonist AR231453. None of these lipid amides increased cAMP in control-transfected cells or in cells transfected with a number of other G protein-coupled receptors. OLDA stimulated both cAMP accumulation and insulin release in HIT-T15 cells, which express GPR119 endogenously, and in GPR119-transfected RIN-5F cells. Oral administration of OLDA to C57bl/6 mice elicited significant improvement in glucose tolerance, whereas GPR119-deficient mice were essentially unresponsive. OLDA also acutely elevated plasma gastric inhibitory peptide levels, a known hallmark of GPR119 activation. OLDA represents a possible paracrine modulator of GPR119 in pancreatic islets, where markers of dopamine synthesis correlated well with GPR119 expression. However, no such correlation was seen in the colon. Collectively, these studies indicate that multiple, distinct classes of lipid amides, acting via GPR119, may be important modulators of glucose homeostasis.
- Subjects :
- Amides metabolism
Amides pharmacology
Animals
Cell Line
Cricetinae
Dopamine metabolism
Dopamine pharmacology
Dose-Response Relationship, Drug
Fatty Acids metabolism
Fatty Acids pharmacology
Female
Humans
Insulin Secretion
Insulin-Secreting Cells enzymology
Insulin-Secreting Cells metabolism
Male
Mice
Mice, Inbred Strains
Mice, Knockout
Organ Specificity
Rats
Receptors, G-Protein-Coupled agonists
Receptors, G-Protein-Coupled deficiency
Receptors, G-Protein-Coupled genetics
Blood Glucose analysis
Dopamine analogs & derivatives
Homeostasis drug effects
Insulin metabolism
Insulin-Secreting Cells drug effects
Receptors, G-Protein-Coupled metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1944-9917
- Volume :
- 24
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Molecular endocrinology (Baltimore, Md.)
- Publication Type :
- Academic Journal
- Accession number :
- 19901198
- Full Text :
- https://doi.org/10.1210/me.2009-0239