Back to Search
Start Over
Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus.
- Source :
-
Biochemistry [Biochemistry] 2009 Oct 27; Vol. 48 (42), pp. 10030-7. - Publication Year :
- 2009
-
Abstract
- ORF56 is a small and thermodynamically extremely stable dimeric protein from the archaeon Sulfolobus islandicus. This DNA binding protein is encoded on plasmid pRN1 and possibly controls the copy number of the plasmid. We report the solution NMR structure as well as the crystal structure of ORF56 comprising a ribbon-helix-helix fold. The homodimer consists of an antiparallel intersubunit beta-sheet and two alpha-helices per monomer, which is a common DNA binding fold of plasmid- and phage-encoded gene regulation proteins. NMR titration experiments with ORF56 and double-stranded DNA derived from its promoter binding site revealed that it is largely the beta-sheets that interact with the DNA. The beta-sheet experiences high local fluctuations, which are conserved among DNA binding ribbon-helix-helix dimers from mesophilic and hyperthermophilic organisms. In contrast, residues strongly protected against H-D exchange are localized in helix 2, forming the hydrophobic intermolecular core of the dimer. A structure-based comparison of the intermolecular binding surface and the change in accessible surface area upon unfolding of various ribbon-helix-helix dimers with the Gibbs free energy changes and m values show a correlation between hydrophobicity of these surface areas and stability. These findings provide possible explanations for the very high thermodynamic stability of ORF56 with retained DNA binding capacity.
- Subjects :
- Amino Acid Sequence
Binding Sites
DNA chemistry
Dimerization
Models, Molecular
Molecular Sequence Data
Protein Conformation
Protein Folding
Protein Structure, Secondary
Sequence Alignment
Structure-Activity Relationship
Thermodynamics
Archaeal Proteins chemistry
Archaeal Proteins metabolism
DNA metabolism
DNA-Binding Proteins chemistry
DNA-Binding Proteins metabolism
Sulfolobus metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1520-4995
- Volume :
- 48
- Issue :
- 42
- Database :
- MEDLINE
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 19788170
- Full Text :
- https://doi.org/10.1021/bi900760n