Back to Search
Start Over
Electron-transfer processes in metal-free tetraferrocenylporphyrin. Understanding internal interactions to access mixed-valence States potentially useful for quantum cellular automata.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2009 Oct 21; Vol. 131 (41), pp. 14969-78. - Publication Year :
- 2009
-
Abstract
- Redox properties of H(2)TFcP [TFcP(2-) = 5,10,15,20-tetraferrocenylporphyrin(2-)] were investigated using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry methods in a large variety of solvents and electrolytes. When DMF, THF, and MeCN were used with TBAP as the supporting electrolyte, the first oxidation wave was assigned to a single four-electron oxidation process reflecting simultaneous oxidation of all iron(II) centers into iron(III) centers in H(2)TFcP. When an o-DCB (1,2-dichlorobenzene)/TBAP combination was used in electrochemical experiments, four ferrocene substituents underwent two very diffuse, "two-electron" stepwise oxidations. The use of a weakly coordinating TFAB ([NBu(4)][B(C(6)F(5))(4)]) electrolyte in o-DCB or DCM results in four single-electron oxidation processes for ferrocene substituents in which the first and second single-electron waves have a relatively large separation, while the second, third, and fourth oxidation processes are more closely spaced; similar results were observed when a DCM/TBAP system and an imidazolium cation-based ionic liquid ((bmim)Tf(2)N = N-butyl-N'-methylimidazolium bis(trifluoromethanesulfonyl)imide) were used. Spectroelectrochemical oxidation of H(2)TFcP in o-DCB or DCM with TFAB as the supporting electrolyte allowed for characterization of the mixed-valence [H(2)TFcP](+), [H(2)TFcP](2+), and [H(2)TFcP](3+) compounds by UV-vis spectroscopy in addition to the "all-Fe(III)" [H(2)TFcP](4+). The chemical oxidation of H(2)TFcP was tested using a variety of oxidants which resulted in formation of mixed-valence [H(2)TFcP](+) and [H(2)TFcP](2+) as well as [H(2)TFcP](4+), which were characterized by UV-vis-NIR, MCD, IR, Mossbauer, and XPS spectroscopy. The intervalence-charge-transfer bands observed in the near-IR region in [H(2)TFcP](+) and [H(2)TFcP](2+) complexes were analyzed using Hush formalism and found to be of class II (in Robin-Day classification) character with localized ferrous and ferric centers. Class II behavior of [H(2)TFcP](+) and [H(2)TFcP](2+) complexes was further confirmed by Mossbauer, IR, and XPS data.
Details
- Language :
- English
- ISSN :
- 1520-5126
- Volume :
- 131
- Issue :
- 41
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 19772340
- Full Text :
- https://doi.org/10.1021/ja905310h