Back to Search Start Over

Non-adrenergic sites for imidazolines are not directly involved in the alpha 2-adrenergic antilipolytic effect of UK 14304 in rat adipocytes.

Authors :
Carpéné C
Galitzky J
Larrouy D
Langin D
Lafontan M
Source :
Biochemical pharmacology [Biochem Pharmacol] 1990 Aug 01; Vol. 40 (3), pp. 437-45.
Publication Year :
1990

Abstract

The binding of the alpha 2-agonist [3H]UK 14304 on Wistar rat adipocyte membranes was separated in two distinct components: one was displaceable by adrenaline or other alpha 2-adrenergic agents and possessed the characteristics of alpha 2-adrenoceptors while the other, non-adrenergic in nature, was only recognized by some imidazoline derivatives [3H]idazoxan binding shared the same characteristics. The non-adrenergic sites labeled by both radioligands are similar to those described for [3H]idazoxan on other tissues such as brain cortex, smooth muscle and kidney. Even though they were about 10-fold more numerous than the true alpha 2-adrenoceptors, the non-adrenergic binding sites were not directly involved in the antilipolytic action of UK 14304 since alpha 2-antagonists devoid of interaction with these sites (yohimbine, phentolamine) totally blocked the UK 14304 effect. However, the existence of such a type of site impairs direct quantification of alpha 2-adrenoceptors in rat adipocytes. The use of [3H]RX 821002 (2-(2-methoxy-1,4-benzodioxan-2yl)imidazoline) allowed an accurate quantification of rat adipocyte alpha 2-adrenoceptors (Bmax = 35 +/- 2 fmol/mg protein, Kd = 2.6 +/- 0.6 nM) since it did not interact with non-adrenergic binding sites and exhibited the highest alpha 2-blocking properties among the various alpha 2-antagonists tested. [3H]RX 821002 binding analysis revealed that alpha 2-adrenoceptors are, on rat adipocytes; (i) less numerous than in other species well known for their alpha 2-adrenergic inhibitory regulation of lipolysis (human, hamster, rabbit); (ii) slightly different in nature from the receptors of these species since they had weaker affinity for clonidine and yohimbine; and however (iii) not of the typical alpha 2-B subtype since the affinity of prazosin was lower than that of oxymetazoline in displacing [3H]RX 821002 or [3H]yohimbine binding.

Details

Language :
English
ISSN :
0006-2952
Volume :
40
Issue :
3
Database :
MEDLINE
Journal :
Biochemical pharmacology
Publication Type :
Academic Journal
Accession number :
1974423
Full Text :
https://doi.org/10.1016/0006-2952(90)90541-r