Back to Search Start Over

The immunostaining for the hypothalamic vasoactive intestinal peptide, but not for beta-endorphin, dynorphin-A or methionine-enkephalin, is affected by the glucocorticoid milieu in the rat: correlation with the prolactin secretion.

Authors :
Watanobe H
Source :
Regulatory peptides [Regul Pept] 1990 May 21; Vol. 28 (3), pp. 301-11.
Publication Year :
1990

Abstract

Effects of the glucocorticoid milieu on the basal and ether stress-induced prolactin (PRL) release and on the immunostaining for hypothalamic vasoactive intestinal peptide (VIP), beta-endorphin (beta-EP), dynorphin-A (DYN-A) and methionine-enkephalin (Met-ENK), were examined in separate groups of male rats. After colchicine treatment in intact rats, VIP-containing cell bodies were observed only in the suprachiasmatic nucleus (SCN). Adrenalectomy (ADX), performed 7 days previously, resulted in the additional appearance of VIP-immunoreactive neurons in the parvocellular subdivision of the paraventricular nucleus (PVN), as well as in significantly higher basal and stressed PRL levels than intact values. Treatment of intact rats with a high dose (500 micrograms/kg body weight (s.c.) daily for 7 days) of dexamethasone (DEX), but not with a low dose (50 micrograms/kg) of DEX, significantly reduced both the basal and stressed PRL release. Administration of either the low or high dose of DEX to ADX rats prevented the appearance of the PVN-VIP neurons. In addition, the ADX-induced high basal and stressed PRL levels were restored to intact values by the low dose of DEX, and completely suppressed by the high dose of DEX. The staining of SCN-VIP-, beta-EP-, DYN-A or Met-ENK neurons was not affected by any treatment employed in this study. These results suggest that the appearance of PVN-VIP immunostaining in ADX rats may, at least in part, be responsible for the enhanced PRL secretion observed in this group. However, SCN-VIP-, beta-EP-, DYN-A- or Met-ENK neurons do not seem to play a pivotal role in the glucocorticoid regulation of PRL secretion.

Details

Language :
English
ISSN :
0167-0115
Volume :
28
Issue :
3
Database :
MEDLINE
Journal :
Regulatory peptides
Publication Type :
Academic Journal
Accession number :
1974081
Full Text :
https://doi.org/10.1016/0167-0115(90)90028-u