Back to Search Start Over

Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein.

Authors :
Qi X
Chu Z
Mahller YY
Stringer KF
Witte DP
Cripe TP
Source :
Clinical cancer research : an official journal of the American Association for Cancer Research [Clin Cancer Res] 2009 Sep 15; Vol. 15 (18), pp. 5840-51. Date of Electronic Publication: 2009 Sep 08.
Publication Year :
2009

Abstract

Purpose: Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because neoplasms generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, we hypothesized that saposin C may be an effective anticancer agent. We investigated the antitumor efficacy and systemic biodistribution of nanovesicles comprised of saposin C coupled with dioleoylphosphatidylserine in preclinical cancer models.<br />Experimental Design: Neuroblastoma, malignant peripheral nerve sheath tumor and, breast cancer cells were treated with saposin C-dioleoylphosphatidylserine nanovesicles and assessed for cell viability, ceramide elevation, caspase activation, and apoptosis. Fluorescently labeled saposin C-dioleoylphosphatidylserine was i.v. injected to determine in vivo tumor-targeting specificity. Antitumor activity and toxicity profile of saposin C-dioleoylphosphatidylserine were evaluated in xenograft models.<br />Results: Saposin C-dioleoylphosphatidylserine nanovesicles, with a mean diameter of approximately 190 nm, showed specific tumor-targeting activity shown through in vivo imaging. Following i.v. administration, saposin C-dioleoylphosphatidylserine nanovesicles preferentially accumulated in tumor vessels and cells in tumor-bearing mice. Saposin C-dioleoylphosphatidylserine induced apoptosis in multiple cancer cell types while sparing normal cells and tissues. The mechanism of saposin C-dioleoylphosphatidylserine induction of apoptosis was determined to be in part through elevation of intracellular ceramides, followed by caspase activation. In in vivo models, saposin C-dioleoylphosphatidylserine nanovesicles significantly inhibited growth of preclinical xenografts of neuroblastoma and malignant peripheral nerve sheath tumor. I.v. dosing of saposin C-dioleoylphosphatidylserine showed no toxic effects in nontumor tissues.<br />Conclusions: Saposin C-dioleoylphosphatidylserine nanovesicles offer promise as a novel, nontoxic, cancer-targeted, antitumor agent for treating a broad range of cancers.

Details

Language :
English
ISSN :
1557-3265
Volume :
15
Issue :
18
Database :
MEDLINE
Journal :
Clinical cancer research : an official journal of the American Association for Cancer Research
Publication Type :
Academic Journal
Accession number :
19737950
Full Text :
https://doi.org/10.1158/1078-0432.CCR-08-3285