Back to Search
Start Over
Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens.
- Source :
-
Clinical and experimental immunology [Clin Exp Immunol] 2009 Nov; Vol. 158 (2), pp. 230-6. Date of Electronic Publication: 2009 Aug 03. - Publication Year :
- 2009
-
Abstract
- Bronchiolitis obliterans syndrome (BOS) is characterized by persistent alloreactive, infective and non-specific epithelial injury, loss of epithelial integrity and dysregulated repair. We have reported increased apoptosis of epithelial cells collected from the large airway in lung transplant recipients. As part of the alloreactive response, T cells induce apoptosis of target epithelial cells by secreting granzyme b. We hypothesized that granzyme b would be increased in lung transplant patients with acute rejection and BOS and that commonly used immunosuppressive agents would fail to suppress this serine protease adequately. We investigated intracellular T cell granzyme b in blood, bronchoalveolar lavage (BAL) and large airway brushing (23 controls, 29 stable transplant, 23 BOS, 28 acute rejection, 31 infection) using flow cytometry and assessed the effect of clinically relevant concentrations of cyclosporin A, tacrolimus, methylprednisolone and a protease inhibitor, gabexate mesilate, on in vitro granzyme b production. Granzyme b was increased significantly in all compartments of all transplant groups compared to controls. Surprisingly, granzyme b was even higher in patients with BOS than in patients with acute rejection. In longitudinal analysis in three patients, blood granzyme b increased prior to or at the onset of BOS. In vitro, methylprednisolone and gabexate mesilate had no effect and cyclosporin A and tacrolimus only a moderate effect on production of granzyme b by CD8(+) T cells. Increased T cell granzyme b production may contribute to BOS pathogenesis and is not curtailed by current immunosuppressants. Longitudinal investigation of granzyme b in blood may provide an adjunctive non-invasive method for predicting BOS/OB.
- Subjects :
- Adult
Aged
Bronchiolitis Obliterans drug therapy
Bronchiolitis Obliterans etiology
Bronchiolitis Obliterans immunology
Bronchoalveolar Lavage Fluid immunology
Bronchoscopy methods
Cells, Cultured
Dose-Response Relationship, Drug
Female
Flow Cytometry methods
Graft Rejection enzymology
Graft Rejection immunology
Granzymes biosynthesis
Humans
Immunosuppressive Agents pharmacology
Longitudinal Studies
Lung Transplantation adverse effects
Male
Middle Aged
T-Lymphocyte Subsets drug effects
Bronchiolitis Obliterans enzymology
Granzymes metabolism
Immunosuppressive Agents therapeutic use
Lung Transplantation immunology
T-Lymphocyte Subsets enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 1365-2249
- Volume :
- 158
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Clinical and experimental immunology
- Publication Type :
- Academic Journal
- Accession number :
- 19737140
- Full Text :
- https://doi.org/10.1111/j.1365-2249.2009.04008.x