Back to Search
Start Over
HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's disease.
- Source :
-
Antioxidants & redox signaling [Antioxid Redox Signal] 2010 Apr; Vol. 12 (4), pp. 435-43. - Publication Year :
- 2010
-
Abstract
- Mitochondrial dysfunction is a central feature of a number of acute and chronic neurodegenerative conditions, but clinically approved therapeutic interventions are only just emerging. Here we demonstrate the potential clinical utility of low molecular weight inhibitors of the hypoxia inducible factor prolyl-4-hydroxylases (HIF PHDs) in preventing mitochondrial toxin-induced cell death in mouse striatal neurons that express a "knock-in" mutant Huntingtin allele. Protection from 3-nitropropionic acid (3-NP, a complex II inhibitor)-induced toxicity by HIF PHD inhibition occurs without rescue of succinate dehydrogenase activity. Although HIF-1alpha mRNA is dramatically induced by mutant huntingtin, HIF-1alpha depletion by short interfering RNAs (siRNA) does not affect steady-state viability or protection from 3-NP-induced death by HIF PHD inhibitors in these cells. Moreover, 3-NP-induced complex II inhibition in control or mutant striatal neurons does not lead to activation of HIF-dependent transcription. HIF PHD inhibition also protects cortical neurons from 3-NP-induced cytotoxicity. Protection of cortical neurons by HIF PHD inhibition correlates with enhanced VEGF but not PGC-1alpha gene expression. Together, these findings suggest that HIF PHD inhibitors are promising candidates for preventing cell death in conditions such as Huntington's disease and Alzheimer's disease that are associated with metabolic stress in the central nervous system.
- Subjects :
- Animals
Cell Death drug effects
Hypoxia-Inducible Factor 1, alpha Subunit antagonists & inhibitors
Hypoxia-Inducible Factor 1, alpha Subunit genetics
Mice
Mitochondria drug effects
Neurons enzymology
Nitro Compounds toxicity
Oxidative Stress
Procollagen-Proline Dioxygenase drug effects
Propionates toxicity
RNA, Messenger metabolism
Rats
Alzheimer Disease drug therapy
Enzyme Inhibitors therapeutic use
Huntington Disease drug therapy
Neurons drug effects
Neuroprotective Agents therapeutic use
Procollagen-Proline Dioxygenase antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1557-7716
- Volume :
- 12
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Antioxidants & redox signaling
- Publication Type :
- Academic Journal
- Accession number :
- 19659431
- Full Text :
- https://doi.org/10.1089/ars.2009.2800