Back to Search
Start Over
Distinct structural requirements for interleukin-4 (IL-4) and IL-13 binding to the shared IL-13 receptor facilitate cellular tuning of cytokine responsiveness.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2009 Sep 04; Vol. 284 (36), pp. 24289-96. Date of Electronic Publication: 2009 Jul 08. - Publication Year :
- 2009
-
Abstract
- Both interleukin-4 (IL-4) and IL-13 can bind to the shared receptor composed of the IL-4 receptor alpha chain and the IL-13 receptor alpha1 chain (IL-13Ralpha1); however, the mechanisms by which these ligands bind to the receptor chains are different, enabling the principal functions of these ligands to be different. We have previously shown that the N-terminal Ig-like domain in IL-13Ralpha1, called the D1 domain, is the specific and critical binding unit for IL-13. However, it has still remained obscure which amino acid has specific binding capacity to IL-13 and why the D1 domain acts as the binding site for IL-13, but not IL-4. To address these questions, in this study we performed mutational analyses for the D1 domain, combining the structural data to identify the amino acids critical for binding to IL-13. Mutations of Lys-76, Lys-77, or Ile-78 in c' strand in which the crystal structure showed interaction with IL-13, and those of Trp-65 and Ala-79 adjacent to the interacting site, resulted in significant impairment of IL-13 binding, demonstrating that these amino acids generate the binding site. Furthermore, mutations of Val-35, Leu-38, or Val-42 at the N-terminal beta-strand also resulted in loss of IL-13 binding, probably from decreased structural stability. None of the mutations employed here affected IL-4 binding. These results demonstrate that the D1 domain of IL-13Ralpha1 acts as an affinity converter, through direct cytokine interactions, that allows the shared receptor to respond differentially to IL-4 and IL-13.
- Subjects :
- Cell Line
Humans
Interleukin-13 genetics
Interleukin-13 Receptor alpha1 Subunit
Interleukin-4 genetics
Ligands
Mutation
Protein Binding physiology
Protein Structure, Secondary physiology
Protein Structure, Tertiary physiology
Structure-Activity Relationship
Interleukin-13 metabolism
Interleukin-4 metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 284
- Issue :
- 36
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 19586918
- Full Text :
- https://doi.org/10.1074/jbc.M109.007286