Back to Search Start Over

Mitochondria and energetic depression in cell pathophysiology.

Authors :
Seppet E
Gruno M
Peetsalu A
Gizatullina Z
Nguyen HP
Vielhaber S
Wussling MHP
Trumbeckaite S
Arandarcikaite O
Jerzembeck D
Sonnabend M
Jegorov K
Zierz S
Striggow F
Gellerich FN
Source :
International journal of molecular sciences [Int J Mol Sci] 2009 May 19; Vol. 10 (5), pp. 2252-2303. Date of Electronic Publication: 2009 May 19.
Publication Year :
2009

Abstract

Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell's ability to do work and control the intracellular Ca(2+) homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.

Details

Language :
English
ISSN :
1422-0067
Volume :
10
Issue :
5
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
19564950
Full Text :
https://doi.org/10.3390/ijms10052252