Back to Search Start Over

A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene.

Authors :
Tseng HC
Chen CW
Source :
Molecular microbiology [Mol Microbiol] 1991 May; Vol. 5 (5), pp. 1187-96.
Publication Year :
1991

Abstract

Expression of tyrosinase in Streptomyces requires functional MelC1 protein, which is postulated to transfer copper to apotyrosinase. We have previously isolated a mutant of Streptomyces lividans, HT32, that phenotypically suppressed mutations in cloned melC1 (H.-C. Tseng and C. W. Chen, in preparation). Plasmid pLUS132, containing an ATG to ATA transition at the initiation codon of melC1, was used for cloning the suppressor gene from HT32. A 1687 bp suppressor DNA was isolated that contained two characteristic Streptomyces coding sequences: a 217-amino-acid open reading frame (cutR) and a truncated open reading frame (cutS) downstream. Subcloning analysis attributed the phenotypic suppression activity to the putative cutR gene from HT32. The putative CutR exhibited similarity to the response regulator OmpR of the osmoregulatory signal-transduction system in Escherichia coli. The truncated CutS resembled, to a lesser degree, the N-terminus of EnvZ, the histidine protein kinase counterpart of OmpR. DNA hybridizing to the cloned cutR-cutS sequence was detected in 16 other Streptomyces species. We postulate that the putative cutR-cutS operon regulates copper metabolism in Streptomyces.

Details

Language :
English
ISSN :
0950-382X
Volume :
5
Issue :
5
Database :
MEDLINE
Journal :
Molecular microbiology
Publication Type :
Academic Journal
Accession number :
1956295
Full Text :
https://doi.org/10.1111/j.1365-2958.1991.tb01892.x