Back to Search
Start Over
Anti-ischemic activity and endothelium-dependent vasorelaxant effect of hydrolysable tannins from the leaves of Rhus coriaria (Sumac) in isolated rabbit heart and thoracic aorta.
- Source :
-
Planta medica [Planta Med] 2009 Nov; Vol. 75 (14), pp. 1482-8. Date of Electronic Publication: 2009 Jun 22. - Publication Year :
- 2009
-
Abstract
- The aim of this work was to investigate the cardioprotective activity of hydrolysable gallotannins from Rhus coriaria L. leaves extract (RCLE) in isolated rabbit heart preparations, submitted to low-flow ischemia/reperfusion damage. RCLE induces a dose-dependent normalization of coronary perfusion pressure (CPP), reducing left ventricular contracture during ischemia, and improving left ventricular developed pressure and the maximum rate of rise and fall of left ventricular pressure at reperfusion. Creatinine kinase (CK) and lactate dehydrogenase (LDH) outflow were significantly reduced during reperfusion. In parallel there was a rise in the release of the cytoprotective 6-ketoprostaglandin F (1alpha) (6-keto-PGF (1alpha)) and a decrease of tumor necrosis factor-alpha (TNF-alpha), both significant only at the highest RCLE concentrations (150-500 microg/mL). The vasorelaxant activity of RCLE was studied in isolated rabbit aorta rings precontracted with norepinephrine (NE) with and without endothelium. The vasorelaxation induced by RCLE was predominantly endothelium-dependent as demonstrated by the loss of RCLE vasorelaxant ability in i) de-endothelized rings and ii) in intact aortic rings after pretreatment with NG-monomethyl- L-arginine (L-NMMA) and 1 H-[1.2.4]oxadiazolo[4.3- A]quinoxalin-1-one (ODQ). The inhibition of vasorelaxation in intact rings by indomethacin (INDO) demonstrates the ability of RCLE to modulate the coronary endothelium cyclooxygenase (COX) pathway. The K-ATP channel antagonist glibenclamide (GLIB) was ineffective. The antioxidant activity of RCLE, investigated in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) model and in living cell systems (rat erythrocytes), was stronger than that of gallic acid, ascorbic acid and trolox. The structure of its main bioactive constituents, profiled by HPLC-ESI-HR-S, comprised a mixture of polygalloylated D-glucopyranose with different degrees of galloylation and 3- O-methylgallic acid. The cardiovascular protective effect of RCLE seems to be due to an interplay of different factors: COX pathway activation, TNF-alpha inhibition, endothelial nitric oxide synthase (eNOS) activation, and free radical and ROS scavenging.<br /> (Georg Thieme Verlag KG Stuttgart, New York.)
- Subjects :
- 6-Ketoprostaglandin F1 alpha metabolism
Animals
Antioxidants therapeutic use
Aorta, Thoracic
Biphenyl Compounds pharmacology
Creatine Kinase metabolism
Dose-Response Relationship, Drug
Endothelium, Vascular metabolism
Erythrocytes drug effects
Heart
Hydrolyzable Tannins isolation & purification
Hydrolyzable Tannins pharmacology
Indomethacin pharmacology
L-Lactate Dehydrogenase metabolism
Male
Myocardial Reperfusion Injury metabolism
Norepinephrine pharmacology
Oxadiazoles metabolism
Phytotherapy
Picrates pharmacology
Plant Extracts chemistry
Plant Extracts pharmacology
Plant Leaves
Prostaglandin-Endoperoxide Synthases metabolism
Rabbits
Tumor Necrosis Factor-alpha metabolism
Vasoconstriction drug effects
Vasodilator Agents pharmacology
omega-N-Methylarginine pharmacology
Antioxidants pharmacology
Endothelium, Vascular drug effects
Hydrolyzable Tannins therapeutic use
Myocardial Reperfusion Injury prevention & control
Plant Extracts therapeutic use
Rhus chemistry
Vasodilator Agents therapeutic use
Subjects
Details
- Language :
- English
- ISSN :
- 1439-0221
- Volume :
- 75
- Issue :
- 14
- Database :
- MEDLINE
- Journal :
- Planta medica
- Publication Type :
- Academic Journal
- Accession number :
- 19548191
- Full Text :
- https://doi.org/10.1055/s-0029-1185797