Back to Search
Start Over
PET of EGFR antibody distribution in head and neck squamous cell carcinoma models.
- Source :
-
Journal of nuclear medicine : official publication, Society of Nuclear Medicine [J Nucl Med] 2009 Jul; Vol. 50 (7), pp. 1116-23. Date of Electronic Publication: 2009 Jun 12. - Publication Year :
- 2009
-
Abstract
- Unlabelled: Epidermal growth factor receptor (EGFR) is a well-characterized protooncogene that has been shown to promote tumor progression in solid cancers. Clinical results for EGFR targeting with specific monoclonal antibodies (mAbs) such as cetuximab and panitumumab are promising; however, most studies indicate that only a subgroup of patients receiving the mAbs benefit from the immunotherapy, independent of EGFR expression level. To understand the in vivo kinetics of antibody delivery and localization, we performed small-animal PET studies with (64)Cu-labeled panitumumab in xenografts derived from 3 cell lines of human head and neck squamous cell carcinoma (HNSCC).<br />Methods: Nude mice bearing HNSCC tumors with different levels of EGFR expression were imaged with small-animal PET using (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-panitumumab. Antibody distribution in the tumors was confirmed by ex vivo immunostaining using panitumumab and fluorescein 5(6)-isothiocyanate (FITC) panitumumab. CD31 immunostaining and Evans blue assay were also performed to assess the tumor vascular density and permeability.<br />Results: Among these 3 tumor models, UM-SCC-22B tumors with the lowest EGFR protein expression showed the highest (64)Cu-DOTA-panitumumab accumulation, whereas SQB20 tumors with the highest EGFR expression showed the lowest (64)Cu-DOTA-panitumumab accumulation. Ex vivo staining demonstrated that SQB20 cells still had extremely high EGFR expression after forming tumors in nude mice, indicating that the low uptake of (64)Cu-DOTA-panitumumab in SQB20 tumors was not due to the loss of EGFR expression. The results from CD31 immunostaining and Evans blue permeability assay suggest that the low vessel density, poor vascular permeability, and binding site barrier are likely responsible for the overall low tumor uptake of the highly EGFR-expressing SQB20 tumors.<br />Conclusion: The results from this study provide a possible explanation for the lack of an observed correlation between therapeutic efficacy of cetuximab and panitumumab and EGFR expression level as determined by immunohistochemistry or fluorescent in situ hybridization and may shed new light on the complications of anti-EGFR mAb therapy for HNSCC and other malignancies.
- Subjects :
- Animals
Antibodies, Monoclonal immunology
Antineoplastic Agents pharmacokinetics
Carcinoma, Squamous Cell diagnostic imaging
Cell Line, Tumor
Copper Radioisotopes pharmacokinetics
Disease Models, Animal
ErbB Receptors immunology
Female
Head and Neck Neoplasms diagnostic imaging
Humans
Mice
Mice, Nude
Panitumumab
Radiopharmaceuticals pharmacokinetics
Tissue Distribution
Antibodies, Monoclonal pharmacokinetics
Carcinoma, Squamous Cell metabolism
ErbB Receptors metabolism
Head and Neck Neoplasms metabolism
Positron-Emission Tomography methods
Subjects
Details
- Language :
- English
- ISSN :
- 0161-5505
- Volume :
- 50
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
- Publication Type :
- Academic Journal
- Accession number :
- 19525473
- Full Text :
- https://doi.org/10.2967/jnumed.109.061820