Back to Search Start Over

Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.

Authors :
Puthan Veetil V
Raj H
Quax WJ
Janssen DB
Poelarends GJ
Source :
The FEBS journal [FEBS J] 2009 Jun; Vol. 276 (11), pp. 2994-3007. Date of Electronic Publication: 2009 Apr 16.
Publication Year :
2009

Abstract

Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of L-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of L-aspartate to form an enzyme-stabilized enediolate intermediate. Ketonization of this intermediate eliminates ammonia and yields the product, fumarate. Although two crystal structures of aspartases have been determined, details of the catalytic mechanism have not yet been elucidated. In the present study, eight active site residues (Thr101, Ser140, Thr141, Asn142, Thr187, His188, Lys324 and Asn326) were mutated in the structurally characterized aspartase (AspB) from Bacillus sp. YM55-1. On the basis of a model of the complex in which L-aspartate was docked manually into the active site of AspB, the residues responsible for binding the amino group of L-aspartate were predicted to be Thr101, Asn142 and His188. This postulate is supported by the mutagenesis studies: mutations at these positions resulted in mutant enzymes with reduced activity and significant increases in the K(m) for L-aspartate. Studies of the pH dependence of the kinetic parameters of AspB revealed that a basic group with a pK(a) of approximately 7 and an acidic group with a pK(a) of approximately 10 are essential for catalysis. His188 does not play the typical role of active site base or acid because the H188A mutant retained significant activity and displayed an unchanged pH-rate profile compared to that of wild-type AspB. Mutation of Ser140 and Thr141 and kinetic analysis of the mutant enzymes revealed that these residues are most likely involved in substrate binding and in stabilizing the enediolate intermediate. Mutagenesis studies corroborate the essential role of Lys324 because all mutations at this position resulted in mutant enzymes that were completely inactive. The substrate-binding model and kinetic analysis of mutant enzymes suggest that Thr187 and Asn326 assist Lys324 in binding the C1 carboxylate group of the substrate. A catalytic mechanism for AspB is presented that accounts for the observed properties of the mutant enzymes. Several features of the mechanism that are also found in related enzymes are discussed in detail and may help to define a common substrate binding mode for the lyases in the aspartase/fumarase superfamily.

Details

Language :
English
ISSN :
1742-4658
Volume :
276
Issue :
11
Database :
MEDLINE
Journal :
The FEBS journal
Publication Type :
Academic Journal
Accession number :
19490103
Full Text :
https://doi.org/10.1111/j.1742-4658.2009.07015.x