Back to Search
Start Over
Structure of the human Rev1-DNA-dNTP ternary complex.
- Source :
-
Journal of molecular biology [J Mol Biol] 2009 Jul 24; Vol. 390 (4), pp. 699-709. Date of Electronic Publication: 2009 May 21. - Publication Year :
- 2009
-
Abstract
- Y-family DNA polymerases have proven to be remarkably diverse in their functions and in strategies for replicating through DNA lesions. The structure of yeast Rev1 ternary complex has revealed the most radical replication strategy, where the polymerase itself dictates the identity of the incoming nucleotide, as well as the identity of the templating base. We show here that many of the key elements of this highly unusual strategy are conserved between yeast and human Rev1, including the eviction of template G from the DNA helix and the pairing of incoming deoxycytidine 5'-triphosphate with a surrogate arginine residue. We also show that the catalytic core of human Rev1 is uniquely augmented by two large inserts, I1 and I2, wherein I1 extends >20 A away from the active site and may serve as a platform for protein-protein interactions specific for Rev1's role in translesion DNA synthesis in human cells, and I2 acts as a "flap" on the hydrophobic pocket accommodating template G. We suggest that these novel structural features are important for providing human Rev1 greater latitude in promoting efficient and error-free translesion DNA synthesis through the diverse array of bulky and potentially carcinogenic N(2)-deoxyguanosine DNA adducts in human cells.
- Subjects :
- Amino Acid Sequence
Binding Sites
DNA biosynthesis
DNA Repair
Deoxycytosine Nucleotides metabolism
Humans
Molecular Sequence Data
Nuclear Proteins genetics
Nuclear Proteins metabolism
Nucleotidyltransferases genetics
Nucleotidyltransferases metabolism
Protein Conformation
Saccharomyces cerevisiae Proteins chemistry
Saccharomyces cerevisiae Proteins genetics
Saccharomyces cerevisiae Proteins metabolism
Templates, Genetic
DNA chemistry
DNA Replication
Deoxycytosine Nucleotides chemistry
Models, Molecular
Nuclear Proteins chemistry
Nucleotidyltransferases chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1089-8638
- Volume :
- 390
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 19464298
- Full Text :
- https://doi.org/10.1016/j.jmb.2009.05.026