Back to Search Start Over

NADPH oxidase 1 controls the persistence of directed cell migration by a Rho-dependent switch of alpha2/alpha3 integrins.

Authors :
Sadok A
Pierres A
Dahan L
Prévôt C
Lehmann M
Kovacic H
Source :
Molecular and cellular biology [Mol Cell Biol] 2009 Jul; Vol. 29 (14), pp. 3915-28. Date of Electronic Publication: 2009 May 18.
Publication Year :
2009

Abstract

NADPH oxidase 1 (Nox1) is expressed mainly in colon epithelial cells and produces superoxide ions as a primary function. We showed that Nox1 knockdown inhibits directional persistence of migration on collagen I. This paper dissects the mechanism by which Nox1 affects the direction of colonic epithelial cell migration in a two-dimensional model. Transient activation of Nox1 during cell spreading on collagen 1 temporarily inactivated RhoA and led to efficient exportation of alpha2beta1 integrin to the cell surface, which supported persistent directed migration. Nox1 knockdown led to a loss of directional migration which takes place through a RhoA-dependent alpha2/alpha3 integrin switch. Transient RhoA overactivation upon Nox1 inhibition led to transient cytoskeletal reorganization and increased cell-matrix contact associated with a stable increase in alpha3 integrin cell surface expression. Blocking of alpha3 integrin completely reversed the loss of directional persistence of migration. In this model, Nox1 would represent a switch between random and directional migration through RhoA-dependent integrin cell surface expression modulation.

Details

Language :
English
ISSN :
1098-5549
Volume :
29
Issue :
14
Database :
MEDLINE
Journal :
Molecular and cellular biology
Publication Type :
Academic Journal
Accession number :
19451223
Full Text :
https://doi.org/10.1128/MCB.01199-08