Back to Search Start Over

Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and elevated pressure.

Authors :
Glascoe EA
Zaug JM
Armstrong MR
Crowhurst JC
Grant CD
Fried LE
Source :
The journal of physical chemistry. A [J Phys Chem A] 2009 May 21; Vol. 113 (20), pp. 5881-7.
Publication Year :
2009

Abstract

The time scale and/or products of photoinduced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at 8 GPa. Ultrafast time-resolved infrared and steady-state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO(2), an observed decomposition product, is complete within 30-40 mus. Proof of principle time-resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

Details

Language :
English
ISSN :
1520-5215
Volume :
113
Issue :
20
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
19438271
Full Text :
https://doi.org/10.1021/jp809418a