Back to Search
Start Over
The synthesis and hydrogen storage properties of a MgH(2) incorporated carbon aerogel scaffold.
- Source :
-
Nanotechnology [Nanotechnology] 2009 May 20; Vol. 20 (20), pp. 204027. Date of Electronic Publication: 2009 Apr 24. - Publication Year :
- 2009
-
Abstract
- A new approach to the incorporation of MgH2 in the nanometer-sized pores of a carbon aerogel scaffold was developed, by infiltrating the aerogel with a solution of dibutylmagnesium (MgBu2) precursor, and then hydrogenating the incorporated MgBu2 to MgH2. The resulting impregnated material showed broad x-ray diffraction peaks of MgH2. The incorporated MgH2 was not visible using a transmission electron microscope, which indicated that the incorporated hydride was nanosized and confined in the nanoporous structure of the aerogel. The loading of MgH2 was determined as 15-17 wt%, of which 75% is reversible over ten cycles. Incorporated MgH2 had >5 times faster dehydrogenation kinetics than ball-milled activated MgH2, which may be attributed to the particle size of the former being smaller than that of the latter. Cycling tests of the incorporated MgH(2) showed that the dehydrogenation kinetics are unchanged over four cycles. Our results demonstrate that confinement of metal hydride materials in a nanoporous scaffold is an efficient way to avoid aggregation and improve cycling kinetics for hydrogen storage materials.
- Subjects :
- Air
Gases chemistry
Gels chemistry
Macromolecular Substances chemistry
Materials Testing
Molecular Conformation
Nanotechnology methods
Particle Size
Surface Properties
Carbon chemistry
Crystallization methods
Hydrogen chemistry
Hydrogen isolation & purification
Magnesium chemistry
Nanostructures chemistry
Nanostructures ultrastructure
Subjects
Details
- Language :
- English
- ISSN :
- 1361-6528
- Volume :
- 20
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 19420675
- Full Text :
- https://doi.org/10.1088/0957-4484/20/20/204027