Back to Search Start Over

A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide.

Authors :
Meiller TF
Hube B
Schild L
Shirtliff ME
Scheper MA
Winkler R
Ton A
Jabra-Rizk MA
Source :
PloS one [PLoS One] 2009; Vol. 4 (4), pp. e5039. Date of Electronic Publication: 2009 Apr 07.
Publication Year :
2009

Abstract

Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps), involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap) family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the first defined mechanism behind the enhanced susceptibility of HIV+ individuals to oral candidiasis since the emergence of HIV.

Details

Language :
English
ISSN :
1932-6203
Volume :
4
Issue :
4
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
19352427
Full Text :
https://doi.org/10.1371/journal.pone.0005039