Back to Search Start Over

A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence.

Authors :
Burns CE
Galloway JL
Smith AC
Keefe MD
Cashman TJ
Paik EJ
Mayhall EA
Amsterdam AH
Zon LI
Source :
Blood [Blood] 2009 Jun 04; Vol. 113 (23), pp. 5776-82. Date of Electronic Publication: 2009 Mar 30.
Publication Year :
2009

Abstract

Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonad-mesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which were subsequently binned into categories representing their proximity to HSC induction. Using overexpression and loss-of-function studies in zebrafish, we ordered these signaling pathways with respect to each other and to the Vegf, Notch, and Runx programs. Overexpression of vegf and notch is sufficient to induce HSCs in the tbx16 mutant, despite a lack of axial vascular organization. Although embryos deficient for artery specification, such as the phospholipase C gamma-1 (plcgamma1) mutant, fail to specify HSCs, overexpression of notch or runx1 can rescue their hematopoietic defect. The most proximal HSC mutants, such as hdac1, were found to have no defect in vessel or artery formation. Further analysis demonstrated that hdac1 acts downstream of Notch signaling but upstream or in parallel to runx1 to promote AGM hematopoiesis. Together, our results establish a hierarchy of signaling programs required and sufficient for HSC emergence in the AGM.

Details

Language :
English
ISSN :
1528-0020
Volume :
113
Issue :
23
Database :
MEDLINE
Journal :
Blood
Publication Type :
Academic Journal
Accession number :
19332767
Full Text :
https://doi.org/10.1182/blood-2008-12-193607