Back to Search
Start Over
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
- Source :
-
Nature [Nature] 2009 Apr 23; Vol. 458 (7241), pp. 1056-60. - Publication Year :
- 2009
-
Abstract
- AMP-activated protein kinase (AMPK) is a metabolic fuel gauge conserved along the evolutionary scale in eukaryotes that senses changes in the intracellular AMP/ATP ratio. Recent evidence indicated an important role for AMPK in the therapeutic benefits of metformin, thiazolidinediones and exercise, which form the cornerstones of the clinical management of type 2 diabetes and associated metabolic disorders. In general, activation of AMPK acts to maintain cellular energy stores, switching on catabolic pathways that produce ATP, mostly by enhancing oxidative metabolism and mitochondrial biogenesis, while switching off anabolic pathways that consume ATP. This regulation can take place acutely, through the regulation of fast post-translational events, but also by transcriptionally reprogramming the cell to meet energetic needs. Here we demonstrate that AMPK controls the expression of genes involved in energy metabolism in mouse skeletal muscle by acting in coordination with another metabolic sensor, the NAD+-dependent type III deacetylase SIRT1. AMPK enhances SIRT1 activity by increasing cellular NAD+ levels, resulting in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the peroxisome proliferator-activated receptor-gamma coactivator 1alpha and the forkhead box O1 (FOXO1) and O3 (FOXO3a) transcription factors. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of AMPK and SIRT1 on energy metabolism.
- Subjects :
- Acetylation
Aminoimidazole Carboxamide analogs & derivatives
Animals
Cell Line
Enzyme Activation
Forkhead Box Protein O1
Forkhead Box Protein O3
Forkhead Transcription Factors genetics
Gene Expression Regulation
Genes, Mitochondrial genetics
Male
Mice
Muscle, Skeletal cytology
Muscle, Skeletal enzymology
Muscle, Skeletal metabolism
Mutation
Oxygen Consumption
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Phosphorylation
Ribonucleotides
Sirtuin 1
Trans-Activators genetics
Trans-Activators metabolism
Transcription Factors
Transcription, Genetic
AMP-Activated Protein Kinases metabolism
Energy Metabolism genetics
NAD metabolism
Sirtuins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1476-4687
- Volume :
- 458
- Issue :
- 7241
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 19262508
- Full Text :
- https://doi.org/10.1038/nature07813