Back to Search
Start Over
PKCalpha tumor suppression in the intestine is associated with transcriptional and translational inhibition of cyclin D1.
- Source :
-
Experimental cell research [Exp Cell Res] 2009 May 01; Vol. 315 (8), pp. 1415-28. Date of Electronic Publication: 2009 Feb 14. - Publication Year :
- 2009
-
Abstract
- Alterations in PKC isozyme expression and aberrant induction of cyclin D1 are early events in intestinal tumorigenesis. Previous studies have identified cyclin D1 as a major target in the antiproliferative effects of PKCalpha in non-transformed intestinal cells; however, a link between PKC signaling and cyclin D1 in colon cancer remained to be established. The current study further characterized PKC isozyme expression in intestinal neoplasms and explored the consequences of restoring PKCalpha or PKCdelta in a panel of colon carcinoma cell lines. Consistent with patterns of PKC expression in primary tumors, PKCalpha and delta levels were generally reduced in colon carcinoma cell lines, PKCbetaII was elevated and PKCepsilon showed variable expression, thus establishing the suitability of these models for analysis of PKC signaling. While colon cancer cells were insensitive to the effects of PKC agonists on cyclin D1 levels, restoration of PKCalpha downregulated cyclin D1 by two independent mechanisms. PKCalpha expression consistently (a) reduced steady-state levels of cyclin D1 by a novel transcriptional mechanism not previously seen in non-transformed cells, and (b) re-established the ability of PKC agonists to activate the translational repressor 4E-BP1 and inhibit cyclin D1 translation. In contrast, PKCdelta had modest and variable effects on cyclin D1 steady-state levels and failed to restore responsiveness to PKC agonists. Notably, PKCalpha expression blocked anchorage-independent growth in colon cancer cells via a mechanism partially dependent on cyclin D1 deficiency, while PKCdelta had only minor effects. Loss of PKCalpha and effects of its re-expression were independent of the status of the APC/beta-catenin signaling pathway or known genetic alterations, indicating that they are a general characteristic of colon tumors. Thus, PKCalpha is a potent negative regulator of cyclin D1 expression and anchorage-independent cell growth in colon tumor cells, findings that offer important perspectives on the frequent loss of this isozyme during intestinal carcinogenesis.
- Subjects :
- Animals
Cell Line, Tumor
Cyclin D1 antagonists & inhibitors
Cyclin D1 genetics
Flow Cytometry
Fluorescent Antibody Technique
Humans
Immunoblotting
Mice
Promoter Regions, Genetic drug effects
Protein Biosynthesis
Protein Kinase C pharmacology
Rats
Signal Transduction
Transcription, Genetic
Cyclin D1 metabolism
Intestinal Neoplasms physiopathology
Protein Kinase C metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1090-2422
- Volume :
- 315
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Experimental cell research
- Publication Type :
- Academic Journal
- Accession number :
- 19232344
- Full Text :
- https://doi.org/10.1016/j.yexcr.2009.02.002