Back to Search Start Over

Essential role of nephrocystin in photoreceptor intraflagellar transport in mouse.

Authors :
Jiang ST
Chiou YY
Wang E
Chien YL
Ho HH
Tsai FJ
Lin CY
Tsai SP
Li H
Source :
Human molecular genetics [Hum Mol Genet] 2009 May 01; Vol. 18 (9), pp. 1566-77. Date of Electronic Publication: 2009 Feb 09.
Publication Year :
2009

Abstract

Nephrocystin mutations account for the vast majority of juvenile nephronophthisis, the most common inherited cause of renal failure in children. Nephrocystin has been localized to the ciliary transition zone of epithelial cells or its analogous structure, connecting cilium of retinal photoreceptors. Thus, the retinal degeneration associated with nephronophthisis may be explained by a functional ciliary defect. However, the function of nephrocystin in cilium assembly and maintenance of common epithelial cells and photoreceptors is still obscure. Here, we used Nphp1-targeted mutant mice and transgenic mice expressing EmGFP-tagged nephrocystin to demonstrate that nephrocystin located at connecting cilium axoneme can affect the sorting mechanism and transportation efficiency of the traffic machinery between inner and outer segments of photoreceptors. This traffic machinery is now recognized as intraflagellar transport (IFT); a microtubule-based transport system consisting of motors, IFT particles and associated cargo molecules. Nephrocystin seems to control some of the IFT particle components moving along the connecting cilia so as to regulate this inter-segmental traffic. Our novel findings provide a clue to unraveling the regulatory mechanism of nephrocystin in IFT machinery.

Details

Language :
English
ISSN :
1460-2083
Volume :
18
Issue :
9
Database :
MEDLINE
Journal :
Human molecular genetics
Publication Type :
Academic Journal
Accession number :
19208653
Full Text :
https://doi.org/10.1093/hmg/ddp068