Back to Search Start Over

Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue.

Authors :
Thomas-Virnig CL
Centanni JM
Johnston CE
He LK
Schlosser SJ
Van Winkle KF
Chen R
Gibson AL
Szilagyi A
Li L
Shankar R
Allen-Hoffmann BL
Source :
Molecular therapy : the journal of the American Society of Gene Therapy [Mol Ther] 2009 Mar; Vol. 17 (3), pp. 562-9. Date of Electronic Publication: 2009 Feb 03.
Publication Year :
2009

Abstract

When skin is compromised, a cascade of signals initiates the rapid repair of the epidermis to prevent fluid loss and provide defense against invading microbes. During this response, keratinocytes produce host defense peptides (HDPs) that have antimicrobial activity against a diverse set of pathogens. Using nonviral vectors we have genetically modified the novel, nontumorigenic, pathogen-free human keratinocyte progenitor cell line (NIKS) to express the human cathelicidin HDP in a tissue-specific manner. NIKS skin tissue that expresses elevated levels of cathelicidin possesses key histological features of normal epidermis and displays enhanced antimicrobial activity against bacteria in vitro. Moreover, in an in vivo infected burn wound model, this tissue results in a two log reduction in a clinical isolate of multidrug-resistant Acinetobacter baumannii. Taken together, these results suggest that this genetically engineered human tissue could be applied to burns and ulcers to counteract bacterial contamination and prevent infection.

Details

Language :
English
ISSN :
1525-0024
Volume :
17
Issue :
3
Database :
MEDLINE
Journal :
Molecular therapy : the journal of the American Society of Gene Therapy
Publication Type :
Academic Journal
Accession number :
19190595
Full Text :
https://doi.org/10.1038/mt.2008.289