Back to Search Start Over

On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

Authors :
Wang L
Caylor KK
Dragoni D
Source :
Rapid communications in mass spectrometry : RCM [Rapid Commun Mass Spectrom] 2009 Feb; Vol. 23 (4), pp. 530-6.
Publication Year :
2009

Abstract

The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments.<br /> (Copyright 2009 John Wiley & Sons, Ltd.)

Details

Language :
English
ISSN :
0951-4198
Volume :
23
Issue :
4
Database :
MEDLINE
Journal :
Rapid communications in mass spectrometry : RCM
Publication Type :
Academic Journal
Accession number :
19142848
Full Text :
https://doi.org/10.1002/rcm.3905