Back to Search Start Over

Heterologous expression of mycobacterial proteins in Saccharomyces cerevisiae reveals two physiologically functional 3-hydroxyacyl-thioester dehydratases, HtdX and HtdY, in addition to HadABC and HtdZ.

Authors :
Gurvitz A
Hiltunen JK
Kastaniotis AJ
Source :
Journal of bacteriology [J Bacteriol] 2009 Apr; Vol. 191 (8), pp. 2683-90. Date of Electronic Publication: 2009 Jan 09.
Publication Year :
2009

Abstract

We report on Mycobacterium tuberculosis Rv0241c and Rv3389c, representing two physiologically functional 3-hydroxyacyl-thioester dehydratases (Htd). These enzymes are potentially entrained in type 2 fatty acid synthase (FASII). Mycobacterial FASII is involved in the synthesis of mycolic acids, which are the major constituents of the protective layer around the pathogen, shielding it from noxious chemicals and the host's immune system. Mycolic acids are additionally associated with the virulence and resilience of M. tuberculosis. Here, Rv0241c and Rv3389c, which are distinct from the previously identified heterodimers Rv0635-Rv0636 (HadAB) and Rv0636-Rv0637 (HadBC) but also the homodimer Rv0130 (HtdZ), were identified by expressing the corresponding candidate open reading frames in Saccharomyces cerevisiae htd2Delta cells lacking mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase activity, followed by scoring for phenotype rescue. The htd2Delta mutant fails to produce sufficient levels of lipoic acid and does not respire or grow on nonfermentable carbon sources. Soluble protein extracts made from mutant htd2Delta cells expressing mitochondrially targeted Rv0241c or Rv3389c contained 3-hydroxyacyl-thioester hydratase activity. Moreover, mutant yeast cells expressing Rv0241c or Rv3389c were able to recover their respiratory growth on glycerol medium and efficiently reduce 2,3,5-triphenyltetrazolium chloride. Additionally, expression of mitochondrial Rv0241c or Rv3389c in htd2Delta cells also restored de novo lipoic acid synthesis to 92 and 40% of the level in the wild-type strain, respectively. We propose naming Rv0241c and Rv3389c as HtdX and HtdY, respectively, and discuss the implications of our finding with reference to Rv0098, a candidate mycobacterial FabZ homologue with intrinsic thioesterase and hydratase activities that lacks the eukaryotic-like hydratase-2 motif.

Details

Language :
English
ISSN :
1098-5530
Volume :
191
Issue :
8
Database :
MEDLINE
Journal :
Journal of bacteriology
Publication Type :
Academic Journal
Accession number :
19136596
Full Text :
https://doi.org/10.1128/JB.01046-08