Back to Search Start Over

Noncovalent self-assembling nucleic acid-lipid based materials.

Authors :
Smitthipong W
Neumann T
Gajria S
Li Y
Chworos A
Jaeger L
Tirrell M
Source :
Biomacromolecules [Biomacromolecules] 2009 Feb 09; Vol. 10 (2), pp. 221-8.
Publication Year :
2009

Abstract

We detail a method originally described by Okahata et al. (Macromol. Rapid Commun. 2002, 23, 252-255) to prepare noncovalent self-assembling films by exchanging the counter-ions of the nucleic acid phosphate moieties with those of cationic lipid amphiphiles. We are able to control the strength and surface properties of these films by varying the composition between blends of DNA of high molecular weight and RNA of low molecular weight. X-ray and AFM results indicate that these films have a lamellar multilayered structure with layers of nucleic acid separated by layers of cationic amphiphile. The tensile strength of the blended films between DNA and RNA increases elastically with DNA content. The length as well as the molecular structure of nucleic acids can affect the topology and mechanical properties of these films. We suspect that the permeability properties of these films make them good candidates for further biological applications in vivo.

Details

Language :
English
ISSN :
1526-4602
Volume :
10
Issue :
2
Database :
MEDLINE
Journal :
Biomacromolecules
Publication Type :
Academic Journal
Accession number :
19099365
Full Text :
https://doi.org/10.1021/bm800701a