Back to Search Start Over

Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.

Authors :
Feige JN
Lagouge M
Canto C
Strehle A
Houten SM
Milne JC
Lambert PD
Mataki C
Elliott PJ
Auwerx J
Source :
Cell metabolism [Cell Metab] 2008 Nov; Vol. 8 (5), pp. 347-58.
Publication Year :
2008

Abstract

The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue. These metabolic effects of SRT1720 are mediated by the induction of a genetic network controlling fatty acid oxidation through a multifaceted mechanism that involves the direct deacetylation of PGC-1alpha, FOXO1, and p53 and the indirect stimulation of AMPK signaling through a global metabolic adaptation mimicking low energy levels. Combined with our previous work on resveratrol, the current study further validates SIRT1 as a target for the treatment of metabolic disorders and characterizes the mechanisms underlying the therapeutic potential of SIRT1 activation.

Details

Language :
English
ISSN :
1932-7420
Volume :
8
Issue :
5
Database :
MEDLINE
Journal :
Cell metabolism
Publication Type :
Academic Journal
Accession number :
19046567
Full Text :
https://doi.org/10.1016/j.cmet.2008.08.017